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Wave propagation through a thin-walled cylindrical orthotropic viscoelastic initially 
stressed tube filled with a Newtonian fluid is discussed. Special attention is drawn 
to the influence of the initial stretch on the wave propagation. It is shown that initial 
stretching of real arteries enhances the propagation of blood pressure pulses in 
mammalian arteries. The dispersion equation for the initial-value problem of a 
semi-infinite tube is also derived. It is shown that the speed of propagation and the 
attenuation vary with the distance from the support. The results obtained for the 
axial wave mode provide an explanation for the experimental observations, which 
is not possible with the results obtained for the infinite tube. 

1. Introduction 
The problem of the propagation of waves through cylindrical tubes filled with 9, 

fluid has been studied over more than 150 years. It has interested researchers like 
Young (1808), Helmholtz (1863), Kirchhoff (1868) and Rayleigh (1896). Since then 
the subject has not lost its attraction, because the problem has bearings on many 
practical applications. The studies involved deal with the dynamic response of 
pressure-transmission lines, acoustic-delay lines, acoustic waveguides, water-hammer 
and pulsatile flow in plastic and rubber tubes used in many fields of industry, while 
medical researchers have long been interested in mechanical models to describe the 
pulse wave in blood vessels. The relevance of the theoretical aspects of pressure-wave 
propagation is well recognized in research on cardiovascular mechanics, cardiophony 
and atherogenesis. In  modelling, any realistic model for the dynamic behaviour of 
blood vessels should include the effects of transmural pressure, axial stretch, and the 
orthotropy and viscoelasticity of the wall. However the author of this paper has found 
only a single contribution (Maxwell & Anliker 1968) where, for an isotropic tube filled 
with an inviscid liquid, the initial stresses are correctly included. I n  considering the 
blood flow through large arteries or the low-frequency flow of liquids through rubber 
or soft plastic tubes, the long-wavelength approximation can be applied. For flow 
through arteries it is seen to be valid in vivo (Pedley 1980; Kuiken 1984). Consequently, 
linearized equations of motion are used. Further, the membrane equations of linear 
shell theory are used to describe the motion of the wall, where the terms that account 
for the effects of the initial stresses can be obtained from the theory of buckling of 
thin-walled shells. The results obtained for the infinite tube reveals that  the initial 
stresses observed in real arteries are favourable for the pulsatile flow in a number 
of aspects. 

The problem of wave propagation through a semi-infinite tube is an initial-value 
problem. The results show that the speed of propagation and the attenuation, 
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which are local properties, vary with the distance to the support of the tube. This 
dependence is introduced through the observation that the constitutive equation for 
the radial and axial displacement of the wall is an indirect constitutive equation (de 
Groot & Mazur 1962) and the fact that  larger axial displacements are possible a t  larger 
distances from the fixed point. Indirect constitutive equations can result in unexpected 
physical phenomena, e.g. diffusion against the concentration gradient (Yaron & Gal-Or 
1974). Also, in the initial-value problem of the semi-infinite tube unexpected results 
for the wave propagation are obtained, which disappear if the initial stretch is such 
that the constitutive equation for the radial displacement reduces to a direct 
constitutive equation. The infinite-tube results for the untethered tube predict for 
the Lamb mode, which is associated with the axial motions of the tube wall, that the 
axial wall displacements become unbounded for the circular frequency going to zero, 
while the semi-infinite tube results predict that the axial displacements are small for 
small values of the circular frequency. Finally the semi-infinite tube results for the 
axial mode give an explanation of the experimental findings of van Citters (1960), 
of Anliker, Ogden & Moritz (1968) and the remark of McDonald (1974) that  sometimes 
the axial mode is observed and sometimes not. 

2. Equations of motion and kinematic boundary conditions for the liquid 
To describe the fully developed oscillatory flow in a straight circular tube, the 

cylindrical coordinates r ,  8, x will be used, the x-axis chosen along the axis of the tube. 
For this tube flow the equations of motion for a Newtonian or a linear elastic fluid 
can be linearized if the axial velocity is small with respect to the speed of wave 
propagation of the pressure pulse. For a homogeneous liquid the linearized equations 
without body forces and the equation of continuity are respectively 

av 1 

at P 
- = --gradp+ v Av, 

div v = 0, (2.2) 

where u denotes the velocity vector of the liquid motion, p the density of the liquid, 
p the pressure, v the kinematic viscosity and A the Laplace operator. On taking 
the divergence of (2.1) and using (2.2), the equation for the pressure becomes 

A p  = 0. (2.3) 

A general solution of (2.1)-(2.3) is obtained by a Fourier or Laplace analysis. 
Assuming that v and p vary harmonically in x and t ,  one term of the Fourier 
decomposition of the velocity u and the pressure p is given by 

[ u ,  p ]  = [ f i ( r ) ,  $(r)]exp iw t - -  , i ( 31 (2.4) 

where w is a real constant denoting the circular frequency and c is the complex 
propagation velocity. The hat * is used to indicate the amplitude of a periodic or 
transient quantity. Substituting (2.4) into (2.3), an ordinary differential equation of 
Bessel type is obtained for the pressure. The solution, satisfying the condition that 
the pressure remains finite at  r = 0, becomes 
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where@, is the reference pressure at  r = 0 and the expansion of the zeroth-order Bessel 
function of the first kind J,,(’y) is used. The subscript 0 is used to indicate a reference 
value. Substituting (2.4) with (2.5) into (2.1), the particular solutions for the 
amplitudes for the components u and v in the x- and r-directions of the velocity 
become respectively 

where in (2.7) the expansion of the first-order Bessel function of the first kind J,(y)  
is used. The solutions (2.6), (2.7) satisfy the equation of continuity (2.2). In the 
long-wavelength approximation, that is Iwa/c12 < 1, where a denotes the radius of 
the tube, only the first term in (2.5)-(2.7) remains, and in the Laplace operator the 
second derivative in the x-direction may be neglected. For axisymmetric flows the 
equations of motion in the x- and r-directions then reduce to 

Substituting (2.4) into (2.8), an ordinary Bessel equation of zeroth order for .ii(r) and 
of first order for a(r) is obtained. The solution of (2.8), satisfying the conditions that 
the velocity remains finite at r = 0, becomes 

PCO co I 
where F,(hy), Fl(hy)  are the zeroth- and first-order members of the functions Fn((hy) 
defined by 

(2.10) 

In  (2.10) J n ( h y )  denotes the nth-order Bessel function of the first kind. In (2.9) c,  
is a scale for c ,  taken equal to the Moens-Korteweg (1878) wave velocity defined by 

c, = (E0h/2pa)4 (2.11) 

where E, denotes the circumferential Young modulus and h the thickness of the 
orthotropic, linear viscoelastic wall. The reference velocity (2.11) represents the wave 
velocity of an inviscid liquid in a compliant tube. The dimensionless parameters k‘ 
and a in (2.9) are defined by 

(2.12) 

Kuiken (1984) performed numerical calculations, where the solutions of the 
dispersion equation (see 5 4) obtained with the velocity profiles satisfying the full 
linearized Navier-Stokes equations for an incompressible fluid are compared with the 
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solutions of the dispersion equation using the low-frequency approximation (2.9). The 
comparison yields that for the mode associated with the radial motions of the tube 
wall the low-frequency approximation can be applied if w a / c  < 0.2. For arteries 
c x 5 m/s. The lowest maximum value of the frequency is obtained for the largest 
arteries. For the aorta, frequencies up to 15 Hz can still be applied without violating 
the low-frequency approximation. For the mode associated with the axial tube-wall 
motions the lowest maximum value of the frequency is obtained for the smallest 
arteries and is determined by the condition w a / c  < 10. Within the long-wavelength 
approximation the intrinsic system property k‘ is assumed to be a slowly varying 
function of the axial coordinate. Using the equation of continuity (2.2), B(x)  in (2.9) 
becomes 

c,, dA 
iwk’ dz  

B(%) = A(%)----. (2.13) 

The function A ( x )  is to be determined by the boundary conditions. To the linearization 
of the equations of motion there correspond linear boundary conditions at  the wall 
r = a.  Denoting the axial displacement of the wall by 6 and the radial displacement 
of the wall by 7, the linearized kinematic boundary conditions a t  the wall are 

(2.14) 

3. Equations of motion of the tube wall 
For an axially loaded cylindrical shell the flexural rigidities are only important in 

describing the displacements, rotations and moments in the neighbourhood of the 
rigid supports of a tube, where the prescribed displacements may not be consistent 
with the displacements belonging to the membrane solution. At a distance of only 
a few diameters from the fixed point, the membrane solution can always be used 
(Moodie, Haddow & Tait 1982; Fliigge 1973). The tube may be initially stressed with 
a longitudinal tension X per unit length along the circumference and a circumferential 
tension T per unit length in the axial direction. These stress resultants form then the 
basic system. It is a membrane system and it is uniform all over the shell. That the 
initially stretched tube is the reference configuration of the cylindrical shell and not 
the unstretched tube is overlooked by most authors dealing with wave propagation 
through initially stretched tubes (Atabek & Lew 1966; Atabek 1968; Flaud et al. 1974; 
Pedley 1980). Only Maxwell & Anliker (1968) have used the correct shell equations 
for an initially stressed tube ; however, the fluid is assumed to be inviscid. To obtain 
the correct differential equations for the perturbation stresses s+ and t+, the theory 
of buckling of cylindrical shells can be applied. I n  the theory of buckling one is 
particularly concerned with constructions in a prestressed state. Fliigge’s (1973) 
equations are considered to be adequate for all possible buckling modes (Koiter 1966). 
The standard membrane equations of motion of the wall, supplemented with terms 
due to the prestress (given by Fliigge 1973, p. 448) are 

(3.1 b )  
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where pw denotes the density of the wall, X the stresses exerted on the wall in the 
axial direction, and Y the stresses exerted on the wall in radial direction. The first 
three terms of (3.1) represent the standard membrane equations for cylindrical shells. 
The third term on the right-hand side of (3.1 b )  shows that a longitudinal prestress 
contributes to the forces in the radial direction owing to the curvature of the shell 
element. The last term on the right-hand side of ( 3 . 1 ~ )  shows that the deflection of 
the shell element tilts slightly, causing the circumferential prestress to produce forces 
in the axial direction. These contributions are also given correctly by Flaud et al. 
(1974). The terms Sa26/ax2 and (F lu )  aC/ax are obtained from equilibrium consider- 
ations in the initially stretched reference configuration of the tube. The stresses X 
and Y exerted on the wall are 

(3.2b) 

where the first terms represent the hydrodynamic forces exerted by the liquid on the 
wall, while the other terms represent the stresses exerted by the surrounding external 
material, modelled respectively by inertia, damping and stiffness terms (Atabek 1968 ; 
Rubinow & Keller 1971). The coefficients a,, L, and 2, ( i , j  = 1, 2) represent 
respectively the additional mass, the frictional coefficient of a dashpot and the spring 
coefficient of the mechanical model of the external material per unit area. Rubinow & 
Keller (1971) did not consider terms with M, and L,, but they showed that 
Z,, = Z, ,  = 0 if Z,, is constant, which we henceforth assume. I n  the long- 
wavelength approximation the second term in the square brackets may be neglected. 

Finally the linear stress-strain relations, following Pate1 & Vaishnav (1972), 
Atabek (1968) and Pedley (1980), are 

where 

(3.3a) 

(3.3b) 

(3.4) 

with E,, ge, Ex,  u, the complex Young modulus and Poissonratio in the circumferential 
direction 8 and the axial direction x respectively. From (3.4) it follows that 
Eeux = Exre ,  and a ratio ye of principal values is introduced: 

(3.5) 

4. The dispersion equation for the infinite tube 
I n  the infinite tube the axial motion of the tube wall is not prescribed at  any point. 

I n  that case all variables are assumed to be proportional to  exp{iw(t-xs/c)}. The 
function A(x)  in (2.9) and (2.13) then becomes a constant. From the available 
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physiological data (Pedley 1980), the radial tethering forces in (3.2b) are small with 
respect to p ;  hence (3.2b) reduces to Y = p .  Also the inertia term in (3.1 b)  can be 
neglected in that case, and (3.1 b )  becomes in the long-wavelength approximation 

t+ T a t  0 = --+p+--. 
U ax 

I n  the linear theory the wall displacements 6 and 7 are assumed to vary also 
proportionally to exp {iw(t - x/c)}. By substitution of these exponent,ial dependence, 
(4.1) yields, using ( 3 . 3 ~ )  for the amplitudes, 

Using (3.3b), ( 3 . 1 ~ )  becomes 

The kinematic boundary conditions ( 2 . 1 4 ~ )  yield, using (2.9u), 

wu 
(k'+Af7 = i-{, 

PCO Co 

(4.3) 

(4.4) 

and finally using (2.9b) with (2.13) gives for (2.14b) 

(4.5) 

The four unknown amplitudes {, $, 9, and j3, A satisfy the four homogeneous 
equations (4.2)-(4.5), where the various dimensionless parameters used are defined by 

a90 ( k " + k ' F A ) y  = 2f. 
PCO 

I U 
Ki = 7 [ Z , ,  + ioL, - w 2 ( M ,  +p,h) ] ,  

PCO 

F = Fl ( i b )  . 

I n  order to  solve these homogeneous equations the determinant of their coefficients 
has to be zero. This yields the dispersion equation 

The expression (4.7) is equivalent to (2.38) of Pedley (1980, p. 92), where the 
coefficient Ki is neglected, consistent with Pedley (1980, p. 96). However, the 
coefficients B& ( i , j  = 1 ,  2) are completely different from those defined by Pedley, if 
T and S are not equal to  zero. Pedley does not discuss the effect of initial stress on 
the wave propagation. Therefore, only his equation (2.25) and (2.37) should be 
revised, with no further consequences for the discussion in his chapter 2.2. The 
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solution for the velocities and wall displacements are obtained from (2.9) and by 
solving (4.2), (4.3), yielding 

(4.9) 

(4.10) 

(4.1 1) 

( 4 . 1 2 ~ )  

(4.12b) 

In  discussion of the effects of the initial stresses, asymptotic solutions of the dispersion 
equation will now bring out the qualitative features of increasing the initial stresses. 
The asymptotic expansions of F for large and small values of a are 

(4.13a) 

(4.13b) 

1 1 
as a+m, 

F = l-1ia2-&a4+O(a6) 8 as a+O. 

For Ki = 0 and a+ 00 the two roots of (4.7) are approximately 

B’ 

Writing (2.4) as 

( 4 . 1 4 ~ )  

(4.14b) 

(4.15) 

(4.16) 

where hi = 2nci/w is the wavelength of the ith mode of the wave, it follows that the 
phase velocity ci and the attenuation or logarithmic decrement ki of the ith mode 
of the wave are defined by 

(4.17a) ci = [Re (k’/co) I-’, 
(4.17b) 

The phase velocity and attenuation calculated from (4.144, representing the first 
mode or Young mode, are 

(4.18a) 

(4.18b) 
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The dimensionless tube parameters B& from (4.6) and B’ from (4.15) are given 
explicitly by 

I 2(ye+S‘) 
1 - y,(T; ’ 

Biz = 
2 

B;, = 
1 -yew;’ 

where the stretches 8‘ and T are defined by 

(4.19) 

(4.20) 

jjtm denoting the transmural pressure. For the isotropic wall y e  = 1 ,  involving = (T, 

and without initial stresses, (4.18) reduces to the result of Pedley (1980). From (4.18) 
with (4.19) we notice that the phase velocity and the small attenuation of this pressure 
wave increase with decreasing w x  - T .  Hence, for a fixed value of ( T ~  an increase of 
the initial transmural pressure increases the phase velocity and the attenuation. If 
T = w x  then c1 = co(l  - y(~:)-i, and m = 1 - Bi1/2BL2 +O(a-l)  becomes z 1 ,  whence 
there are no axial wall motions and the axial velocity profile reduces to that of a rigid 
tube. It is remarkable that, for an initial transmural pressure of lo4 N m+ ( x  a 
diastolic pressure of 80 mmHg) and co - 5 m s-l, T becomes - 0.4, which is of 
the order of the Poisson ratio of arteries. For Bil = 0 the radial displacements 
( f / a ) / ( f lO /pc : )  = l/Bil and become independent of a and k‘. An increase in the 
longitudinal stretch increases also the phase velocity and the attenuation, but less 
than a comparable increase of the transmural pressure. 

The second root of (4.7), (4.14b) represents the second mode or Lamb mode with 
an attenuation of 271 tanin z 2.6 and a phase velocity c2 = co(Bi2a)tsec$. 
Longitudinal stretch increases the wave speed, while the effect of a transmural 
pressure becomes negligible in the limit a+ co, The principal wall motions for the 
second root are longitudinal, which follows from the ratio between (4.11) and (4.10), 
yielding ( / f  = -2i!(Bk2 a): / (oa/c , ) .  

For Ki = 0 and a+O the two roots of (4.7) are approximately 

(4.21 a )  

(4.21 b )  

If ye = 1, = (T, 2” = S’ = 0 the result of Pedley (1980) is obtained. The first root 
represents the pressure wave with an attenuation x 271 and a wave speed 
c1 = co a[B’/{8(Bi2 - Biz) + 2Bil}]?. Here the transmural pressure decreases the wave 
speed. For a-+O Pedley (1980) and Lighthill (1970) discuss the fact that  the first root 
does not really represent a pressure wave since inertia is negligible, and the 
phenomenon is more a diffusive one rather than a wave one. The second root (4.21 b )  
shows no attenuation, and an increase of the transmural pressure as well as a 
longitudinal stress increases the wave speed. However, as m =+ 1 this root predicts 
extreme large longitudinal wall displacements, as follows from (4.1 1 )  with 
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walc,  = (v/aco) a2 very small for a < 1 .  This behaviour is a consequence of the fact 
that  for an infinite tube no axial boundary conditions in some point of the tube are 
imposed. The large longitudinal wall displacements for a+O are not observed in 
reality and this is usually attributed to the hindrance of the axial wall displacements 
due to longitudinal tethering of the wall (Pedley 1980), but a single constraint a t  a 
point achieves the same, as will be discussed in $6. 

For K; 4 0 and (wa /co)2  4 1 ,  where a need not be small, the asymptotic solutions 
of (4.7) are approximately 

ki2 = 2/( 1 - F )  Bi1, (4.22 a) 

k p  = - KB;,/B’. ( 4 . 2 2 ~ )  

For an isotropic wall ( 4 . 2 2 ~ )  is the solution given by Kerris (1939), Zwikker & Koster 
(1949) and Iberall (1950). I n  this solution the effects of the initial stresses are absent, 
and as m = 1 no axial wall motions occur. The approximate solutions (4.22) are also 
valid for a+O. The dispersion equation (4.7) reduces with (4.13b) approximately to 

Since wa/co  = (v/ac,) a2 x a2 for blood flow through the large arteries, the second 
term does not contribute for a+O, as Pedley (1980) assumes, and (4.22) is again 
obtained. 

Numerical solutions will confirm the above qualitative results. To compare these 
results with Atabek & Lew (1968), an isotropic elastic wall without tethering but with 
wall inertia will be considered. The same numerical values as those of Atabek & Lew 
will be used, namely = 0.5, K = -0.1, a varying between zero and 10, while S’/B;, 
and T’IB;, are varied between zero and 1 .  This means that very large initial 
deformations are involved. Large deformations are usually not consistent with linear 
theory. However, the reference configuration is the initially stretched tube and the 
linear theory is applied for the small perturbations with respect to this reference state. 

The effects on the Young mode and the Lamb mode if the strains s’ and T’ are varied 
are displayed in figures 1 4 .  In  figure 1 the effect is shown on the dimensionless phase 
velocity cl/co as a function of a for increasing values of T .  For the Young mode 
an increase of the phase velocity is shown for increasing values of the transmural 
pressure, up to stbrains of 50 yo, when Bil becomes zero. For a further increase the 
classical equations of elastic stability (Flugge 1973 ; Koiter 1966) predict a decrease 
of the phase velocity, although one would expect a monotonic behaviour, hence a 
further increase. A critical examination of the foundations of these equations is being 
undertaken by the author and will be reported in due time. Anyway, McDonald (1974, 
p. 407, figure 14.12) gives experimental results showing an increase of cl/co with 
increasing values of the transmural pressure. Therefore, although comparison with 
experiment is very hard since the elastic properties of biological tissue are nonlinear, 
the experiments and the above numerical results point in the same direction. It should 
be noted that Atabek & Lew (1966) find the opposite behaviour. The same figure 
shows that the phase velocities of the second mode, the Lamb mode, are much faster 
than those of the first mode, the Young mode. The phase velocity of the Lamb mode 
increases with the frequency parameter a and with the prestrain T .  

Figure 2 shows the effect of varying T’ on the decrement exp ( -  k ) ,  termed the 
‘transmission per wavelength’ by Atabek & Lew. For the Young mode a more 
significant effect is shown than shown by Atabek & Lew. while for the Lamb mode 
the opposite conclusion follows. The decrement behaviour with a is for the fast wave 
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FIGURE 1. Dimensionless phase velocity of the Young mode and the Lamb mode as a function of 
the frequency parameter for various values of the circumferential prestrain T’. 
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FIGURE 3. Dimensionless phase velocity of the Young mode and the Lamb mode as a function of 
the frequency parameter for various values of the longitudinal prestrain 8'. 

also quite different from that of the slow waves. For small values of a the slow wave 
is not propagating as the fast wave is. With increasing values of a the decrement of 
the slow wave is monotonically increasing, while for the fast wave i t  decreases rapidly, 
going through a minimum a t  a about 3 and then increasing slowly. 

Figure 3 shows the effect on the phase velocity if the axial prestress is varied. For 
the Young mode the phase velocity increases only slightly with an increase of 8'. This 
is also consistent with measurements reported by Flaud et al. (1975). For the Lamb 
mode the longitudinal strain S' has a considerable effect on the phase velocity. The 
tendency shown by theLamb mode conforms with the picturesgiven by Atabek & Lew, 
although the variation with S' is much more pronounced. 

Finally figure 4 shows the associated decrements if S' is varied. The variations in 
the decrements are moderate for both modes. 

5.  The dispersion equation for a semi-infinite tube 
For a semi-infinite tube the axial displacement of the tube a t  x = 0 is assumed to 

be zero. The tube is axially fixed a t  that  point. Such a configuration is obtained e.g. 
for an artery where the surrounding tissue is removed over some distance. For the 
tethered tube (5 < 0) the axial displacements are zero, but for x > 0 the axial 
displacements are not hindered. Figure 5 shows the tube with its support a t  x = 0. 

With the boundary condition shown in figure 5 the radial motion of the wall of 
the flexible tube can be followed a t  x = 0. The membrane equations are then sufficient 
and applicable from x 2 0. If other boundary conditions are chosen, e.g. a rigid tube 
to which the flexible tube is attached, the flexural rigidities become important. 
However, for the axially symmetrically loaded cylindrical shell, the effects of other 
boundary conditions extend only over a small distance from the support. These effkts 
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FIGURE 5. Axially supported semi-infinite tube. 

can be neglected already at a distance of a few diameters from the support (Moodie 
el al. 1982). In  this section particularly the effect of axial stretching, due to stresses 
exerted by the flow on the wall, is considered. As the relative displacement in axial 
direction with respect to the fixed point x = increases with x it may be inferred 
that the influence of stretching becomes more dominant with increasing distance 
from the support. From (3.3) and (4.1) we have for the wall displacements: 

a[ - B,,pa + B,,s+a _ -  
ax - BIIB,, - B,,(B,, - T )  ’ 

where from the shell equation (3.1 a )  i t  follows that 

(5.Sa) 

(5 .Sb)  

At this point i t  should be noted that the axial stresses influence the radial 
displacement 7 ,  as the second term on the right-hand side of ( 5 . 1 ~ )  shows. From (5 .2 )  
it  is noticed that 7 is now not simply proportional to exp{iw(t-x/c)), but it is 
assumed that 7 can be factorized with this term. The differences obtained with the 
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classical results are mainly due to this term and for B,,-T = 0 the results are 
comparable to the results for the unbounded tube. 

For z = 0 it follows that s+ = 0 and 6 = 0. From (5.1) we obtain the conditions a t  

(5.3~) 
the support : 

4 2  Pa2 
= Bll B22 - B,,(B,, - T )  ' 

(5.3b) 

For the whole tube the kinematic boundary conditions (2.14) are applicable. 
Substitution of (5.2) into (5.1 b ) ,  execution of the integration of (5.2) with (5.3) and 
using the kinematic boundary condition, u = aLJat, an integral equation for u a t  r = a 
is obtained: 

Differentiation of (5.4) yields the differential equation 

with two boundary conditions at  x = 0, r = a respectively 

B' uI,,, = 0,  

where Bks is defined by 

(5.7) 

The radial motion of the wall x = 0 is chosen to be consistent with the membrane 
solution. The effect of the prestresses for the semi-infinite tube is different from the 
infinite tube owing to the conditions at  x = 0. The difference is already manifested 
through the dimensionless quantity Bk,, which does not occur for the infinite tube. 
The unknown function @o A(x)  is found from (5.6) when u and p are substituted from 
( 2 . 9 ~ )  and (2.4b) respectively. The solution is given by 

iwa x iwa x 
{c,, a { c , ,  a 

@,A(z)  = $oA, exp - - (k' + d l ) }  +floA,  exp ~ - (k' - a,)} +$oA,, (5 .8 )  

with j jo  A ,  satisfying 
jj0 Ap(k'2 - 8:) +go( Ic'2 - 8;) k' 

where dl and 8, are dimensionless parameters defined 
B' K B;,F 

d!=-+ i- 2 B f ,  

= 0, 

by : 

Substitution of (5.8) into (2.9) yields for the axial velocity 

(5.9) 

(5.10 a) 

(5.10b) 

u = {[ k' + A p ~ o  t?)] exp iw (1 -:) 
P o  
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and for the radial velocity 

a 

For the tethered tube x < 0 it is justifiable to  assume that the pressure can be written 
as$, exp { h ( t  - z/c)>.  This Fourier term of the pressure is associated with an ‘incident ’ 
wave propagating towards x = 0 from - co, where the axial displacements go 
continuously over in the non-zero displacements of the untethered tube. The velocity 
profiles for :c = 0 show a term propagating upstream with wave speed c,/(Re (Sl)l. This 
is a non-propagating wave for the tethered tube, since, for a+O, K = Ki/ (w2a2/c: )  
is very large, whereas, for a- tm,  F = 0 and from ( 5 . 1 0 ~ )  i t  follows that 
8,+i (B; ,K/B‘)k  It is obvious from (5.11) and (5.12) that every variable proportional 
to exp iw(t-x/c) no longer applies to the semi-infinite tube. The two unknown 
constants+,A, and$, A, are determined by the two conditions (5.6) a t  x = 0, yielding 
determined by the two conditions (5.6) a t  x = 0, yielding 

$, A ,  A, +@,, A ,  +@,,IC’ = 0, (5.13) 

- 6, k’+,Al + 6, Fc’+,A, + Sf$,A, - ( K +  Bhs) (BI,/B’)$,k’ = 0. (5.14) 

Finally two homogenous equations are obtained from the conditions in the radial 
direction : the kinematic boundary condition (2.14b) and the radial displacement 
(5.1a). For the determination of ( 5 . 1 ~ )  we have to evaluate the intJegral (5.2). 
Substituting (5.1) and X (3.2a) an integral equation in s+ is obtained. The solution is 
found by differentiation analogous to (5.4). The solution procedure is straightforward 
but elaborate. Factorization of the radial wall displacement 7 in the form 

~ ( x )  = $(x) exp (iw(t-x/c), (5.15) 

and substitution of the explicit expression for s+ into (5.1 a )  yield the homogeneous 
equation 

In (5.16) the function G is defined by 

where y2 = - B;, KIB’, while the function E is given by 

Bi,+T y2 

The kinematic boundary condition (2.14b) becomes, with (2.4), (5.12) and (5.15), 
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The five unknown amplitudes jjoA,, jjOA2, jjoAp, p ,  * and $ satisfy the five 
homogeneous equations (5.9), (5.13), (5.14), (5.16) and (5.17). To obtain a non-trivial 
solution the determinant of the above-mentioned set of homogeneous equations 
should be zero, which yields the characteristic equation for the semi-infinite tethered, 
initially stressed, orthotropic, viscoelastic tube : 

k'*(l -F)B'+k'2[(B;,+B;2-+B;,)  F+B;,(l-F) K - 2 B i 2 ] + F - 2 K  

2k'2(P+2B~s)(FB;,-2B~,)cos 

( F -  2K)  FB;, -- - y!} 8, sin 6') 

- 2((FBi1 - 2Bi,)(F - 2K)(Bi2 + B;, B&s)/ B'} cos - - 6, {::: I 
The characteristic equation (5.18) involves x, which is usually not present in a 

dispersion equation. One would expect a dependence on x, as the wall displacements 
depend on x, and therefore, of the five amplitudes jjo A,, jj, A,, $, A,, jjo and $, f is 
a slowly varying function of x. The first four terms in (5.18) are independent of x/a 
and are the same as the dispersion equation for the unbounded tube. The dispersion 
equation for the semi-infinite tube is no longer a relatively simple quadratic equation 
in kt2, but a complicated transcendental equation. To obtain the roots, Cauchy's 
formulae of complex-function theory are used. The method is documented by McCune 
(1966). He discusses how the zeros and poles of an analytic function may be deter- 
mined within some contour in the complex plane. A subroutine using this method 
has been programmed by Beasley & Meier (1974) and further improved by Giri & 
Baum (1978). The method is applied over a square contour, where also the two 
roots for the unbounded tube are found which represent the travelling waves of this 
tube. 

The dispersion equation (5.18) shows that k' depends on many parameters: the 
parameters that describe the properties of the wall and the surrounding tissues, the 
radius of the tube, the properties of the fluid, the frequency of the pulsation, the initial 
strains applied on the tube, and the axial distance from the fixed point. In  the 
following discussion, particularly the variation of the dimensionless phase velocities 
and decrement will be considered as functions of the dimensionless axial distance x f a 
from the fixed point. We will restrict ourselves to an elastic tube with a reference 
phase velocity co of 5 m/s, a Poisson ratio CT of 0.5 and no surrounding tissues. 
tethering constants Z , , ,  L,  and M ,  are therefore taken to be zero and K reduces to 
-pwh/pa.  The liquid is Newtonian, so only real values of the frequency parameter 
a are considered. 

6. Discussion of the results for the semi-infinite tube 
The results for the bounded tube are shown for the Young mode in the figure 6 

and for the Lamb mode in figure 7 .  The figures show the variation of the dimensionless 
phase velocity (6a ,  7 a )  and the decrement (6b, 7b) as functions of the dimensionless 
axial distance x/a from the fixed point at  x = 0 of the tube. Figure 6 ( a )  shows the 
variation of the phase velocity with x / a  for K = -0.1, T = S' = 0 and for a = 10, 
35 and 60 respectively. As in the case of the unbounded tube the phase velocity varies 
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FIQURE 6 .  Dimensionless phase velocity cJc0 and the decrement exp (k,) for the Young mode as 
functions of the dimensionless distance xla for K = -0.1, T = S = 0 for three values of the 
frequency parameter a :  CI] ,  a = 60; 0,  35; A, 10. 

only slightly for a > 5 .  For a = 10 i t  varies also slightly with x/a, that  is from 0.950 
for x/a = 1 to 0.943 for x/a = 40, whereas the unbounded-tube solution gives 0.958. 
The variation with x/a increases with a, up to 4 %  for a = 60, and i t  increases also 
with the mass of the tube wall, e.g. for K = -0.2 the variation with x/a is 6 yo. The 
variations are always within this value for the Young mode. For Biz = 0, that is for 
T’ = 0.5, the indirect constitutive equation for the radial wall displacement 7 becomes 
a direct one, the variations become practically independent of x/a with 
c,/c, = 1.141 kO.001, which can be compared with the unbounded-tube value 1.141. 

The variation of the decrement exp ( -  k , )  with distance is more pronounced than 
the variation of the phase velocity with distance. I n  figure 6 ( b )  it  is seen again that 
for lower values of a the variation is small but increases progressively with a. 
Evidently for large a amplification of a disturbance is possible. For a = 60, 
T = S’ = 0, K = -0.1 the variations are between 0.815 at x/a = 18 and 1.128 a t  
x/a = 21, the decrement in the infinite tube being 0.959. Following the behaviour of 
the first mode with distance we notice that the amplitude firstly decreases slightly, 
and then is amplified; this is followed by a significant attenuation, which decreases 
passing again into an amplification of the first mode’s amplitude. This pattern seems 
to be repeated with distance. The final effect is that  the mode propagates through 
the tube in a manner comparable to the propagation inferrred from the infinite tube; 
however, the amplitude does not decrease monotonically. For Biz = 0 this behaviour 
disappears and the variation of the transmission per wavelength with distance 
becomes negligible, 0.9304 f 0.0002, while the infinite tube yields 0.9271. It should be 
noted that for B;, = 0 the extra terms appearing in (5.18) for the bounded tube have 
a common factor FB;,. For large a this is a small factor. For the lower values of a 
or for Bi2 = 0 it  can be concluded that the variations with x/a are very limited for 
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the Young mode. The same conclusion holds for the Lamb mode. The Lamb-mode 
phase velocity cz/co for a = 10 increases slightly from 3.36 at x / a  = 1 to 3.40 at 
x / a  = 40, with a variation in the decrement from 0.312 to 0.322. The phase velocity 
is lower than the value for the infinite tube, 3.80, while the transmission is higher 
for the bounded tube than for the unbounded tube, being 0.257. For a = 35 the phase 
velocities of the Lamb mode are larger and also increase almost linearly with the 
distance from 4.08 to 4.85, while the infinite-tube value is 4.68. The decrement for 
a = 35 varies with distance from 0.610 at x /a  = 1 to 0.552 at x /a  = 40. The 
tendencies noticed a t  a = 35 become more pronounced at a = 60. Figure 7 ( a )  shows 
that for K = -0.1 and T = S' = 0 the phase velocity of the second mode increases 
strongly with distance, but figure 7 (b)  shows that the wave becomes practically 
non-propagating for x / a  > 29. However, a third mode is found which becomes 
propagating for x / a  > 29. The phase velocity increases linearly from 3.71 a t  x / a  = 35 
to 4.57 a t  x /a  = 53. where the decrement is increased to 0.959. This may explain the 
experimental results of Anliker et al. (1968), who measured the axial wall motion of 
the carotid artery with heart beat at different distances from the heart and found 
that the higher harmonics were strongly damped with distance. The measurements 
of van Citters (1960) are also consistent with the above tendencies shown for the Lamb 
mode. Van Citters showed that the axial wave in a Penrose tube of a length of 1 m 
could easily be suppressed by manual constriction of the tube, that is by introducing 
an axial constraint. Figure 7 ( b )  shows further that  the increase in damping with 
distance from x la  = 6 to x / a  = 30 disappears for B;, = 0. This may account for the 
fact (McDonald 1974) that the axial wave is sometimes observed and sometimes not. 
Moreover the axial displacements of the wall for bounded tubes are finite for w + O  
and x < co, while for the unbounded tube it is of the order l/w. The difference 
illustrates the fact that with an axial constraint at a point there is strain energy 
involved in stretching the tube owing to the forces exerted by the fluid on the wall, 
which is absent in the analysis of the unbounded tube. Not shown in figure 7 are two 
other modes for Biz + 0 having a phase velocity of the order of the first mode but 
a decrement some ten times smaller. These extra modes become non-propagating 
when Biz = 0. 

From figures 6 and 7 as well as from the dispersion equation €or the bounded tube 
(5.18) it can be concluded that for Biz + 0 the indirect constitutive equation for 7 
is of influence for all values of x/a.  It is finally noted that when the tube is stiff in 
axial direction, hence E,+ co and hence v,p0, Bit-+ CO, B;, = 2, the dispersion 
formula for the bounded tube (5.18) reduces to the simple dispersion of Kerris (1939) 
ICfz = 1/ (  1 - F )  for the unbounded tube. 

7. Conclusions - 0. It is discussed 
whether for this value of B;, the axial displacements of the wall can be neglected 
so that the radial displacements of the wall are almost completely determined by the 
amplitude of the pressure pulse alone. 

The influence of an initial boundary condition of the axial tube-wall displacement 
is in particular significant for the attenuation. The variation with the axial distance 
is caused by the interaction of the radial displacement with the axial displacement. 
The latter varies with distance to  the point of fixation of the tube wall. It is shown 
that for an elastic tube without prestresses the variation of the attenuation of the 
Young mode along the tube decreases with the decrease of the frequency parameter. 

The initial diastolic pressure in human arteries implies that 
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FIGURE 7 .  (a) Dimensionless phase velocity cz/cu of the Lamb mode as a function of the 
dimensionless distance x/a for a = 60, K = -0.1 and for four values of the circumferential strain 
T'. ( b )  Decrement exp ( -  k,) of the Lamb mode as a function of the dimensionless distance x/a for 
the same values as in (a). 
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The phase velocity of the Young mode varies slowly along the tube, and its numerical 
value is quite well approximated by the simple dispersion equation of Womersley. 

The Lamb mode, which is primarily associated with the axial tube-wall motions, 
is strongly determined by prevention of the axial wall motion a t  some point. The 
obtained results for this mode are consistent with measurements. 
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